Pattern Decomposition with Complex Combinatorial Constraints: Application to Materials Discovery
نویسندگان
چکیده
Identifying important components or factors in large amounts of noisy data is a key problem in machine learning and data mining. Motivated by a pattern decomposition problem in materials discovery, aimed at discovering new materials for renewable energy, e.g. for fuel and solar cells, we introduce CombiFD, a framework for factor based pattern decomposition that allows the incorporation of a-priori knowledge as constraints, including complex combinatorial constraints. In addition, we propose a new pattern decomposition algorithm, called AMIQO, based on solving a sequence of (mixed-integer) quadratic programs. Our approach considerably outperforms the state of the art on the materials discovery problem, scaling to larger datasets and recovering more precise and physically meaningful decompositions. We also show the effectiveness of our approach for enforcing background knowledge on other application domains.
منابع مشابه
Human Computation for Combinatorial Materials Discovery
We will show how human computation can dramatically speed up the performance of combinatorial optimization methods. We describe our work in the context of the domain of materials discovery. Our approach leverages the complementary strength of human input, providing global insights into problem structure, and the power of combinatorial solvers to exploit complex local constraints.
متن کاملCrowdsourcing Backdoor Identification for Combinatorial Optimization
We will show how human computation insights can be key to identifying so-called backdoor variables in combinatorial optimization problems. Backdoor variables can be used to obtain dramatic speedups in combinatorial search. Our approach leverages the complementary strength of human input, based on a visual identification of problem structure, crowdsourcing, and the power of combinatorial solvers...
متن کاملAutomated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System.
Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. Agi...
متن کاملUncovering Hidden Structure through Parallel Problem Decomposition for the Set Basis Problem: Application to Materials Discovery
Exploiting parallelism is a key strategy for speeding up computation. However, on hard combinatorial problems, such a strategy has been surprisingly challenging due to the intricate variable interactions. We introduce a novel way in which parallelism can be used to exploit hidden structure of hard combinatorial problems. Our approach complements divide-and-conquer and portfolio approaches. We e...
متن کاملOptimization of profit and customer satisfaction in combinatorial production and purchase model by genetic algorithm
Optimization of inventory costs is the most important goal in industries. But in many models, the constraints are considered simple and relaxed. Some actual constraints are to consider the combinatorial production and purchase models in multi-products environment. The purpose of this article is to improve the efficiency of inventory management and find the economic order quantity and economic p...
متن کامل